In mathematics, Maschke's theorem,[1][2] named after Heinrich Maschke,[3] is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. If (V, ρ) is a finite-dimensional representation of a finite group G over a field of characteristic zero, and U is an invariant subspace of V, then the theorem claims that U admits an invariant direct complement W; in other words, the representation (V, ρ) is completely reducible. More generally, the theorem holds for fields of positive characteristic p, such as the finite fields, if the prime p doesn't divide the order of G.
One of the approaches to representations of finite groups is through module theory. Representations of a group G are replaced by modules over its group algebra KG. Irreducible representations correspond to simple modules. Maschke's theorem addresses the question: is a general (finite-dimensional) representation built from irreducible subrepresentations using the direct sum operation? In the module-theoretic language, is an arbitrary module semisimple? In this context, the theorem can be reformulated as follows:
The importance of this result stems from the well developed theory of semisimple rings, in particular, the Artin–Wedderburn theorem (sometimes referred to as Wedderburn's Structure Theorem). When K is the field of complex numbers, this shows that the algebra KG is a product of several copies of complex matrix algebras, one for each irreducible representation.[6] If the field K has characteristic zero, but is not algebraically closed, for example, K is a field of real or rational numbers, then a somewhat more complicated statement holds: the group algebra KG is a product of matrix algebras over division rings over K. The summands correspond to irreducible representations of G over K.[7]
Returning to representation theory, Maschke's theorem and its module-theoretic version allow one to make general conclusions about representations of a finite group G without actually computing them. They reduce the task of classifying all representations to a more manageable task of classifying irreducible representations, since when the theorem applies, any representation is a direct sum of irreducible pieces (constituents). Moreover, it follows from the Jordan–Hölder theorem that, while the decomposition into a direct sum of irreducible subrepresentations may not be unique, the irreducible pieces have well-defined multiplicities. In particular, a representation of a finite group over a field of characteristic zero is determined up to isomorphism by its character.